Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 8123-8138, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405527

RESUMO

New cobalt(II), copper(II), and zinc(II) Schiff metal complexes were synthesized by the condensation reaction of 4-nitrobenzene-1,2-diamine with 3-4-(diethylamino)-2-hydroxybenzaldehyde. Fourier transform infrared, nuclear magnetic resonance, ultraviolet-visible, electron paramagnetic resonance, and high-resolution electrospray ionization mass spectrometry and powder X-ray diffraction were used to characterize the synthesized H2L and its metal complexes. Conductance measurements, magnetic moment estimation, and metal estimation have all been determined and discussed. The electrochemical properties of the synthesized compounds have been determined and discussed using cyclic voltammetry. The molecular structures of H2L and its metal complexes have been optimized using the B3LYP functional and the 6-31G (d,p) basis set, and their parameters have been discussed. The quantum chemical properties of these synthesized compounds have been predicted through charge distribution and molecular orbital analysis. The biological properties of the synthesized compounds' antioxidant, antifungal, and antibacterial activity have been studied and discussed. Furthermore, H2L and its complexes have been docked with HER2-associated target proteins in breast cancer.

2.
Cell Biochem Funct ; 41(6): 676-686, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37341988

RESUMO

Biomedical applications of zirconia nanomaterials were limited in biological systems. In this research, 8-15 nm size zirconia nanoflakes (ZrNFs) were fabricated and their nature, morphology, and biocompatibility were evaluated. The synthesis was carried out using Enicostemma littorale plant extract as an effective reducing and capping agent. Physiochemical properties of prepared ZrNFs were characterized using diverse instrumental studies such as UV-vis spectrophotometer, Fourier-transform infrared, powder X-ray diffractometer, scanning electron microscope, transmission electron microscope (TEM), energy dispersive X-ray, and cyclic voltammetry (CV). The XRD pattern confirmed the tetragonal phases of ZrNFs and the highest crystallite size of Zr0.02, Zr0.02, and Zr0.06 was 56, 50, and 44 nm, respectively. The morphology of samples was assessed using TEM. Electrophysiological effects of ZrNFs in the cellular interaction process were revealed by the slower rate of electron transfer results in CV demonstration. Biocompatibility of synthesized ZrNFs was studied on A431 human epidermoid carcinoma epithelial cells. The cell viability was increased with an increasing the concentration of nanoflakes up to 6.50-100 µg/mL. The cell viability and observed IC50 values (44.25, 36.49, and 39.62 µg/mL) reveals that the synthesized ZrNFs using E. littorale extract is found to be efficient toxic to A431 cancer cell lines.


Assuntos
Carcinoma de Células Escamosas , Nanopartículas Metálicas , Humanos , Estudos Prospectivos , Linhagem Celular , Sobrevivência Celular , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...